
Journal of Statistical Physics, Vol. 48, Nos. 5/6, 1987 

Influence of Frequency Noise on Nascent Hysteresis 
in Optical Bistability 

R. Lefever, l j .  Wm.  Turner, 1 and L. A. Lugiato 2 

We study the influence of frequency noise on optical bistability in the 
neighborhood of the critical point where the hysteresis loop appears. We show 
that when the transmitted field evolves on a faster time scale than that of the 
noise, the hysteresis loop shifts toward lower values of the incident pumping 
field. 
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1. I N T R O D U C T I O N  

The theory of fluctuations in nonequilibrium systems has rapidly grown 
into a widely diversified area of research. Its development over the last 15 
years has been considerably stimulated by the fundamental work of 
Prigogine on chemical instabilities and dissipative struturesJ ~ 3) From the 
beginning, it was evident that noise plays an important  role in the onset of 
these phenomena. Near  the bifurcation points, where different branches of 
solutions of the deterministic equations coalesce, the dynamics of non- 
equilibrium systems necessarilly involves stochastic elements needing a 
finer description than the deterministic one. In this domain, the efforts of 
Prigogine and his co-workers have largely aided to elucidate the analogies 
existing between phase transitions and nonequilibrium instability (see 
Ref. 4 for a review). 

Recently these analogies have been extended even further. It has been 
shown that the notion of phase transition applies to transition phenomena 
due to the presence of external noise. These so-called noise-induced 
transitions take place when some systemic control parameters randomly 
fluctuate in the course of time. (5) The source of these fluctuations is in the 
environment. Their intensity, in contrast to thermal noise, does not scale as 
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an inverse power of the system size. This allows deep quantitative and 
qualitative modifications of the usual bifurcation diagrams. Notably, in 
some cases one observes that a preexisting, i.e., deterministic, instability is 
shifted: the noise displaces, by an amount proportional to its intensity, the 
location in parameter space of an instability already present under noiseless 
conditions; in other cases, when the intensity of the external noise exceeds 
some finite threshold, "new" transitions appear, of which there is no trace 
in the deterministic situation. 

Such behavior shows that the role of randomness needs to be 
appraised for a much broader class of situations than those commonly 
investigated in which the environment is generally assumed to be constant 
in time. They call for more systematic studies into the effect of external 
noise. The results we report here concerning the appearance of hysteresis 
are a step in this direction in the case of optical bistability. 

It is well known that in this phenomenon quantum fluctuations are 
essential at a fundamental level, and many papers deal with them (see, e.g., 
Refs. 6-8). Often in experiments, however, the presence of quantum 
fluctuations is overshadowed by more standard types of noise, such as 
thermal noise in the material and in the radiation field or by the parametric 
(external) noise affecting some of the control parameters. The practical 
importance of knowing how these noises affect optical bistability has given 
rise to several recent studies (see Ref. 9 and the references cited therein). In 
particular, in Ref. 10 it has been shown that the presence o f  frequency 
noise, which is of multiplieative type, tends to suppress dispersive optical 
bistability. 3 The treatment used to establish this result is based on a 
straightforward elimination of the field variables and on the modeling of 
the frequency fluctuations by Gaussian white noise. Here we revisit the 
problem under different conditions as far as the noise and the field 
variables are concerned. Namely, we present a perturbative approach that 
applies in the neighborhood of the critical point and does not suppose a 
priori that the rate constants describing the evolution of the field variables 
and of the nonlinear refractive index of the material are widely separated. 
Furthermore, we consider that the fluctuations of the frequency are given 
by a colored noise of the Ornstein Uhlenbeck type. 

The system and its deterministic properties are recalled in the next 
section. In Section 3 we introduce our stochastic treatment and indicate 
how it can be used to analyze different situations arising when frequency 
fluctuations are present. In Section 4 we report the results obtained using a 
perturbative approach in the case where the noise is slow compared to the 
field variables. 

3 For the standard noise levels this suppression occurs on a time scale which is too long to be 
relevant for practical purposes, but the phenomenon becomes dramatic for large noise levels. 
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2. T H E  M O D E L  

We consider a purely dispersive bistable device, which under deter- 
ministic conditions obeys the evolution equations 

-fl = - k [ x l  - Y q- x 2 ( E I N - -  0) ]  (2.1) 

22 = - k [ x 2  - x l ( A N -  0)] (2.2) 

(AN)  = - l ( A N -  x~ - x 2) (2.3) 

where xl and x2 are the real and imaginary parts of the normalized trans- 
mitted field, and y is the normalized incident field, which is taken real and 
positive for definiteness. A N  is proportional to the nonlinear part of the 
refractive index, and 0 is the detuning parameter, k and l are the time 
constants characterizing the intrinsic time scales on which the electric field 
and the material vary. 

The stationary-state solutions Xl,, x2,, and (AN) ,  of (2.1) (2.3) obey 
the well-known cubic steady-state equation ~14) 

E 2 = y2 = ]E.~I2 [1 + (lEvi 2 - 0) 2 ] (2.4) 
with 

IE, I z = x2A + x2a = (AN)I  (2.5) 

For 0~< 0, =, , /5 ,  the steady-state curve lEvi 2 as a function of y2 is single- 
valued (Fig. 1 ), whereas for 0 > ~ it is S-shaped and leads to a hysteresis 
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cycle. The values of the variables and parameters corresponding to the 
critical point are 

xl c = 31/4/21/2, x2 c = _2-1/23 l / z ,  (AN)c = 2/31/2 
(2.6) 

Yc = 2.21/2/33/4, 0 c = 31/2 

In the following, we study the influence of the fluctuations of the 
detuning parameter  0 in the neighborhood of this critical point. For this 
purpose it is appropriate to introduce the excess variables and parameters 
with respect to (2.6) by putting 

x 1 = xlc(1 § x2 = x2c(1 +ev),  AN=(AN)~.(1 +ew) 
(2.7) 

O=O,,(l+e2I), y=yc(l+3~2I/4+e3a) 

is a smallness parameter  measuring the distance with respect to criticality; 
I and a are O(1). Replacing (2.7) into (2.1)-(2.3) and expanding them, one 
obtains the steady-state solutions us, V~, w~ of the evolution equations as 

/As = U0 + ~/AI "3w ~2/A2 § " " " 

W s = - w  O + S w  1-t-g2W 2 +  "'" 

It is easy to see that u 0 is given by the roots of the cubic equation 

u 3 - (3//4) u o - 2a = 0 (2.8) 

The analogy between (2.8) and the Landau equation for the order 
parameter in the classical paraferromagnetic phase transition is obvious. 
Clearly the role of the temperature and external magnetic field are played 
here respectively by I and a. 

3. F L U C T U A T I O N S  OF T H E  D E T U N I N G  P A R A M E T E R  e 

We suppose that the detuning parameter  0 randomly fluctuates 
around the constant average value given in (2.7). To incorporate these fluc- 
tuations we replacy 0 by 

0 t = 0oil  + e2I+ ~'(71/2/Kkl/2) J Z,] (3.1) 

where Z, is an Ornstein Uhlenbeck process obeying the stochastic differen- 
tial equation (SDE) 

t3.,~) 1/2 

dZt - 72 Z, dt + ~ dW, (3.2) 
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W, is the Wiener process. The scaling parameter K appearing in (3.1) and 
(3.2) provides a convenient measure of the "distance" from the white noise 
situation t~) (cf. also Ref. 4, Chapter 8). This can easily be seen as follows. 
The transition probability density of Z, obeys the Fokker-Planck equation 
(FPE) 

O,p(Z, tIZo, O)~--~ ~?zZp(Z,t[Zo, O)+-~ gzp(Z, tlZo, O) (3.3) 

which admits the stationary-state solution 

ps(Z) = (Tur 2) ~n exp ( -Z2 /~  2) (3.4) 

The latter is independent of K2/7, so that the variance stays constant as the 
correlation time varies. Assuming that the Ornstein-Uhlenbeck process is 
started with (3.4), it is a stationary process: one has 

<Z,> = 0  (3.5) 

- ~-~-5 exp ( - 7 Irl'~K2 ] (3.6) 

Accordingly, the correlation function C(z) is exponentially decreasing and 
the correlation time of the noise is given by 

r,. = K2/7 (3.7) 

The power spectrum obtained by Fourier transforming (3.6) reads 

o -2 

S ( v )  - 2Tc(K4v2/,22 + 1) (3 .8)  

Hence, for K ~  0, the noise term 7~/2Z,/K that models the fluctuations of 0 
in (3.1) converges to white noise: its power spectrum becomes flat and at 
all frequencies S(v)= a2/2~. 

These results also clarify the meaning of the factors e i and 

r --- = (3.9) 
r/ 

multiplying Z, in (3.1). The value of r/ expresses how rapidely the field 
variables relax (cf. ~r) as compared to the fluctuations of 0 (cf. re). For 
I /r /~ 1 the evolution of the field is much more rapid than that of the noise. 
e i modulates the intensity of the noise inside the system; i > 0 corresponds 
to a weak noise limit. 
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We set 

z = kt, 6 =l /k  (3.10) 

replace 0 by (3.1) and, using (2.7), we rewrite the dynamical equations of 
the system in term of the excess variables u, v, w, and Z~. One has 

du v 2w (2 w) e2(3_iv ) 
T~ = -~'-~+-T+ ~ -~- + 

~i 1 

- Z~ -~--U (1 +8v)  (3.11 t 

d ~  
- -  = u - v - 2w + e ( 3 I -  2uw) + ~2(3Iu) 
dr 

Ci 1 

+ 3z~ T (1 + ~u) I3.121 

dw 613u v (3u2 ~ ) 1  - +  - - =  ~ - w  (3.131 

ZT +_a 
dZ~ = - tl-- f dz ~ dW~ (3.14) 

In the absence of noise, due to the existence of the critical point (2.6), one 
necessarily has that one of the eigenvalues, say 2 o, associated with the 
linear terms of (3.11)-(3.13), i.e. the terms of order ~o, is null. Considering 

the case where 6 < 2(1 + ~f2/3), one has that the other two eigenvalues 

2_+ = - 1  - �89 + i(�89 + 6 - -  1 6 2 1 1 / 2  = •r -~- iZi (3.15) 

are then complex conjugate. In order to exploit the critical slowing down 
due to the zero eigenvalue, we make a change of variables to diagonalize 
the linear terms of (3.11)-(3.13). We put 

v = T em* 

w n 
(3.161 

where 

T =  
t -2 / (36 )  -2 (36 )  1 I 

1+ 2iZ/6 1 -  2i2i/6 - 1  
1 1 1 
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is the transformation matrix formed with the eigenvectors corresponding to 
2o and 2_+. Furthermore, for simplicity we take 6 4  1. 4 This situation is 
typical of miniaturized, optically bistable devices utilizing semi- 
conductors. (12) Decomposing m and m* into their real and imaginary parts, 
m = x + i y ,  we obtain for the evolution of x, y, and n a new set of 
dynamical equations in which we have neglected all higher order terms in 
wherever possible. It is of the form 

dx 
~-r = A0(x, y, n; 6 )+eAl(x ,  y, n; C]) q- g2A2(x, y, n, 6) 

,~i--2 
+ - 7 -  Z,[A3(6) + gA4(n, 6) + A s(x, y; 6) 

=- X(x, y, n, z; g, 6) (3.17) 

dy = Bo(x, y, n; 6) + eBl(x, y, n; 6) + e2B2(x, y, n; 6) 
dz 

8i-2 
-I- -fly-- Z~EB3(6) + eB4(n, 6) + Bs(x, y; 6) 

= Y(x, y, n, z; e, 6) (3.18) 

dn 
-~  = G2C2(x, y, FI; (~) q- ~3C3(.X , y,  H; 6) 

8i- I  
+ ~ z~EG(6) + ~Cs(n; 6) + ~C~(n, ~) 

- F(x, y, n, z; ~, 6) (3.19) 

The joint probability density p(x, y, n, z, t) of the system obeys the 
following FPE: 

6, p(x, y, n, z, t) 

[ - g  xX(x, y, n, z; e, 6) - c?.,. Y(x, y, n, z; ~, b) 

-8 , ,F(x ,  y ,n,z;e,c~)+ ~ z + f f ~ : ~  p ( x , y , n , z , t )  (3.20) 

In the following we suppose that the system has been coupled with the 
stationary noise Z~ for a sufficiently long time so that it has had the 

4 This simplification avoids the handling of very lengthy polynomial expressions. It is not the 
basis of the adiabatic elimination procedure. 

822/48,/5-6-7 
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possibility to settle down to a steady state: c?~ p = 0. We are interested in the 
corresponding probability density p, (x, y, n, z). Its evaluation in general is 
an intractable mathematical problem. For some physically relevant limiting 
cases, however, an approximate solution can be obtained by perturbation 
methods. 

Two situations can in fact be treated straightforwardly starting from 
(3.20). The first arises when 

~,~ 1 ~ 1/q (3.21) 

1.e., the field evolves much more slowly than the noise, but both these 
variables evolve much more rapidly than n. It is then appropriate to 
modulate the intensity of the noise in (3.1) by putting j = l  and i=2 .  
Indeed, for r/ ~ ~ o% the correlation function of ZJq, 

{ (Z~/rl)(Zo/rl)) = (a2/2rl 2) exp( - I  Tl/r/2) (3.22) 

becomes cLcorrelated, indicating that the corresponding power spectrum 
becomes white; p~.(x, y, n, z) in this case can be evaluated by a technically 
lengthy procedure which has already been used and described in detail in 
the case of the Hopf bifurcation. (~3/We hope to come back to this problem 
in a forthcoming paper. In the next section, we devote our attention to the 
other case, for which (3.20) is the appropriate starting point, namely that 
t/-~ ~ 1, i.e., the field variations are more rapid than the fluctuations of the 
noise. 

4. S O L U T I O N  OF (3.20)  W H E N  THE FIELD EVOLVES M O R E  
RAPIDELY T H A N  THE NOISE 

It is then appropriate to modulate the intensity of the noise by putting 
i = 2 and j = 0. Explicitly the drift terms for x, y, and n in (3.20) then read 

X(x, y, n, z; e, 6) 

= - x- -~Y + ~ - +  Z~ (3~-~) + ~ I -  3---~ xn + 2-~ 

- -~- n + Z~ - -  _~_ ~ 2  xX + y2 + _ _  + _ _  x 
, 5  2 

= ho + ehl + e2h2 (4.1) 



Influence of Frequency Noise in Optical Bistability 1053 

Y(x, y, n, z; e, 6) 

~ n - Z ~  + ~2 [ - 5x/-3x2 - x/3y2 

+ 56xy + x/-3lx -- 36Iy + Z ~ ( ~ x  - 36y)] 

= go + egl + e2g2 

F(x, y, n, z; e, 6) 

3e6 F 2 361 
- 2 Z ~ + e  2 [ - 2 x n - - ~ y n + 2 6 a + - ~ - - n  

v 

+Z~(3~2 n)]+e3[~---~(x2+ y Z ) - 4 x / - 3 x y - 3 b l x  

(4.2) 

(4.3) 

We replace (4.1) (4.3) in (3.20), and assuming that 

,~ "~ l/r/2 ,~ 1, 83/6 ,~ l/r/2 (4.4) 

we expand p.,.(x, y, n, z) as 

ps(x, y, n, z) = po(x, y, n, z) + t1- 2p2(x, y, n, z) + ... 

Replacing (4.5) in (3.20) with • ,p=0,  we find at the order r/~ that 

(4.5) 

(C~xh o + c~. go) po(x, y, n, z) = 0 (4.6) 

From (6) one immediately deduces that 

po(x, y, n, z) = 6 ( x -  Xo) 6 ( y -  yo) ~(n, z) (4.7) 

where 

(4.8) 

(4.9) 



1054 kefever, Turner, and Lugiato 

are the solutions of ho(x o, Yo, n, z) = 0 and go(Xo, Yo, n, z) = 0, and where 
~b(n, z) remains a function to be determined. This is what one expects to 
happen when the evolution of the field variables is so fast that at each 
instant they are able to "equilibrate" to the value of the noise. Another way 
to see this is to consider the correlation function 

( Z ~ Z o )  = I a2 exp(-lml/t/2) (4.10) 

One notes that r/2 is nothing else than the correlation time of the noise 
when the unit of time is taken equal to the relaxation time of the field. 
Hence, in the limit r/-2 ~ 0, which is of interest here, the evolution of the 
field is completely correlated to that of Z~: the spectral density S(v) of Z~ 
converges to a cS-peak located at the frequency v = 0, i.e., 

lim S(v)=la26(v)  (4.11) 
r/ 2 ~ 0  

In order to determine ~b(n, z), one notes that at the order q-2 the 
following solvability condition must be imposed: 

O-2 

x 6(x - Xo) 6(y - Yo) O(n, z) = 0 

This yields for ~b(n, z) the equation 

O ~ z + ~ O =  ~(n,z)=O,(efl+a2f2+e3f3)qb(n,z)  (4.12) 

Expanding ~b(n, z) as 

~(n, z) --- ~o(n, z) + e~l(n, z) + ... (4.13) 

one finds at the order eo that 

~o(n, z) -- ps(Z) ~bo(n) (4.14) 

i.e., the joint probability factorizes. This is natural since n undergoes a 
critical slowing down. Setting now ~k(n, z)--ps(z)(bk(n, z) ( k =  1,...), one 
has at the order e I for ~bl(n, z) the equation 

( -zaz  + IO-2a~) ~(n,  ~) = a~f~ ~o(n) (4.15) 

Again a solvability condition, namely 

f dz ~?,,[f~ p,(z) ~bo(n)] = 0 (4.16) 
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must be imposed. Given that f l  = -36z/2 and that p=(z) is a Gaussian, 
(4.16) is automatically satisfied. The solution of (4.16) can then be written 
as 

01(n, z)= H~(n)- zc?n(- 36)qbo(n ) (4.17) 

where H~(n) remains to be determined. Proceeding now to the order e z, 
one has that 

(--zO_-+ laZO::)qJ2(n,z)=c?nf101(n,z)-t-c~,fz~o(n) (4.18) 

The solvability condition applied to the right-hand side of (4.18) yields the 
equation 

2 c~''~~ -6n3+~--~ n+26a ~b~ 

whose solution 

~ o ( n ) = N e x p I ~ ( - n e + 3 l n 2 + 8 a n )  1 (4.19) 

determines po(x, y, n, z) completely: 

[2 ] po(x, y, n, z) = N 6(x - Xo) 6(y - Yo) p=(z) exp ~ ( - n  4 + 3In 2 + 8an) 

(4.20) 

N is a normalization constant. In order to determine the solution com- 
pletely up to the order e ~, the solvability conditions must be calculated up 
to the order e 3. Evaluating the solution of (4.8), one obtains 

qJ2(n,z)=H2(n)+z2I~-~-~,,nOo(n)]+z[3-~62 c~nHl(n)] (4.21) 

Using (4.21) and the expressions for ~bl(n, z) and ~b0(n ), one deduces from 
the solvability condition at the order e3 the condition 

_ s  
2 \ 4 )o=,,H,(n)+O,fzH,(n) 

Fa2/2732\  4 3612 135312] 
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Putting Hl(n ) = / t l ( n )  ~bo(n ) and solving for /~l(n)  yields 

with 

( L(u)=  7 +c~ b/4-~-T'-~ 64 ] 

and where CI and C2 are constants. We expect the 
distribution to exist, i.e., 

f dz f~ dn nk~(n, z) < oo 

Hence we have the condition 

f nkFIl(n) Co(n) c& < oo 

which for k~>2 can 
condition 

Lefever, Turner, and Lugiato 

(4.23) 

moments of the 

(4.24) 

only be satisfied if C~ = 0. Next the normalisation 

k = l , 2  .... f dxdy dn & pc(x, y, n, z) =0, 

yields the relation 

;o[; ] L(u) du+ C2 Co(n) dn = 0  (4.25) 

which determines the value of C2. Thus, up to the order e~, we obtain 
finally 

ps(x, y, n, z) 

= N6(x-  xo) cS(y-- yo) {l + ~ I C2 + F(n) + z (3--~F2 ) O,,]} ~bo(n) p.~(z) (4.26) 

where 

8 [-n s In 3 (13512 27o-2"~ n l  



Influence of Frequency Noise in Optical Bistability 1057 

Fig. 2. 
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Localization of the extreme n,,, as a function of a for the values of cr 2 indicated and 
1=0.2,  cS =0.1,  e =0.05. 

From (4.26) we can immediately determine the reduced probability density 
p~*(n) for n: 

* i p, (n) = dzdxdyp .~ (x , y , n , z )  

= 1 +e[Ca+F(n) ] }  ~bo(n ) (4.27) 

In Fig. 2, we have plotted its extrema u,, as a function of a for increasing 
values of ~2 and a noiseless situation chosen slightly inside the bistable 
domain. One observes that the frequency noise shifts the bistable region to 
smaller values of the incident field. 

A C K N O W L E D G M E N T  

This research was carried out in the framework of the European 
Economic Community (EEC) twinning project on the dynamics of non- 
linear optical systems. 

REFERENCES 

1. I. Prigogine, in From Theoretical Physics to Biology, M. Marois, ed. (North-Holland, 
Amsterdam, 1969). 

2. P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and 
Fluctuations (Wiley, New York, 1971). 



1058 Lefever, Turner, and Lugiato 

3. G. Nicolis and 1. Prigogine, in Nonequilibrium Systems. From Dissipative Structures to 
Order Through Fluctuations (Wiley, New York, 1979). 

4. D. Walgraef, G. Dewel, and P. Borckmans, Adv. Chem. Phys. 49:311 (1982). 
5. W. Horsthemke and R. Lefever, Noise Induced Transitions. Theory and Applications in 

Physics, Chemistry and Biology (Springer-Verlag, 1984). 
6. L. A. Lugiato, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1984), 

Vol. XXI, pp. 69-216. 
7. J. C. Englund, R. R. Snapp, and W. C. Schieve, in Progress in Optics, E. Wolf, ed. (North- 

Holland, Amsterdam, 1984), Vol. XXI, pp. 355-428. 
8. S. W. Koch, Dynamics of First-Order Phase Transitions in Equilibrium and Non-equilibrium 

Systems (Springer-Verlag, 1984). 
9. L. A. Lugiato and R. J. Horowicz, J. Opt. Soc. Am. B 2:971 (1985). 

10. L. A. Lugiato, A. Colombo, G. Broggi, and R. J. Horowicz, Phys. Bey. A 33:000 (1986). 
11. G. Blankenship and G. C. Papanicolaou, SIAM J. Appl. Math. 34:437 (1978). 
12. F. Abraham and S. D. Smith, Rep. Prog. Phys. 45:815 (1982). 
13. R. Lefever and J. Win. Turner, Phys. Rev. Lett. 56:1631 (1986). 
14. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, Phys. Rev. Lett. 36:113 (1976). 


